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On the Z(4) spin model? 

V L V Baltar and M E Pol 
Departamento de Fisica, Pontificia Universidade Catolica, Cx P 38071, Rio de Janeiro, 
RJ, Brazil 

Received 30 May 1985, in final form 8 August 1985 

Abstract. We study the Z(4) spin model in two dimensions in the region of parameters 
where a critical phase may occur. Our results, obtained by Monte Carlo simulations, Monte 
Carlo renormalisation group techniques and a study of the elementary excitations near the 
SOS model, indicate that there is no critical phase in the Z(4) model. 

1. Introduction 

The Z(4) model is defined, on a square lattice, as follows. The sites are occupied by 
classical ‘spins’ S, which can take values S = e”, 8 = 2x114, 1 = 0, 1,2,3. Assuming 
nearest-neighbour interactions only, the total energy of the Z(4) model is defined as 

E = - J ,  C   COS[^(^)- e ( n + p ) ] -  1)- J~ C {COS 2[e(n)- e ( n + p ) ] -  1). (1) 
n.C n, P 

In equation ( l ) ,  n is a vector that labels the lattice sites, p represents the conventional 
primitive vectors of the square lattice, and J ,  and J2 are the coupling constants. 

It is convenient to introduce variables xI = exp(-E,/ kT) where EI is the energy 
required to rotate a spin by an angle 2x114, k is the Boltzmann constant and T is the 
temperature. With these definitions 

x1 = exp[ -( J1 + 2 J 2 ) /  kT] x2 = exp( -2 J , /  kT). (2) 

It can be shown that the partition function of the model obeys generalised self- 
duality relations in the region 0 < x, < (1  + xJ/2 and 0 < x2 < 1, while it is self-dual 
along the line 

2x1+xz= 1. (3) 

In the region where generalised self-duality holds, thermodynamical paths can be 
characterised by the power law x2 = x f ,  0 < a < m. 

The phase diagram of the Z(4) model has been studied by several different formal- 
isms (Wu and Lin 1974, Alcaraz and Koberle 1980, Rujan et a1 1981, Kohmoto et a1 
1981, Carneiro et a1 1982, Stavans and Domany 1983, Baltar et a1 1984). It is found 
that the Z(4) spin model in two dimensions has at least four distinct phases: 

( I )  a ferromagnetic phase, 
(11) an intermediate partially ordered phase, 
(111) a disordered phase, 
(IV) a phase with perpendicular order. 
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Figure 1. Phase diagram for the Z(4) model. Crosses correspond to Monte Carlo simulations 
and full lines were obtained by the Migdal-Kadanoff renormalisation group scheme (Baltar 
er a1 1984). AB is the self-dual line. Dotted lines represent the boundaries of a hypothetical 
critical phase, which our calculations indicate does not exist. 

These are shown in figure 1, which exhibits results previously obtained by means 
of Monte Carlo simulations and the Migdal-Kadanoff renormalisation group scheme 
(Baltar et a1 1984). 

To the phase diagram w'as added a fifth hypothetical phase, whose possible boun- 
daries are indicated by dotted lines. It corresponds to the conjectured existence of a 
critical phase, similar to that of Z( N )  models with N 3 5 ,  which might appear also in 
the Z(4) model. This massless phase has been found in the Z(4) gauge model in four 
dimensions (Creutz and Okawa 1983, Alcaraz and Jacobs 1983). But in spite of the 
many similarities between Z(  N )  gauge theories in four dimensions and the correspond- 
ing spin theories in two dimensions, it is not clear that their phase diagrams must be 
identical. 

Roberts (1984) has found a critical structure for both Z(4) models, spin and gauge, 
using perturbative corrections to the Migdal-Kadanoff renormalisation scheme. 
However, Alcaraz and Drugowich de Felicio (1984) studied the spin Z(4) model in 
two dimensions by means of finite-size scaling techniques and did not find a critical 
phase. 

In this paper we further investigate the question about the existence or not of a 
critical phase for the Z(4) spin model in two dimensions. 

In § 2 we present our results of Monte Carlo simulations in the region where the 
critical phase may occur, that is, in the region of thermodynamical paths with a 5 2. 
In § 3 we analyse the elementary excitations of the Z(4) model near the limit of the 
restricted SOS model. 

2. Monte Carlo simulations 

We here describe the method of analysis of the Monte Carlo ( MC) computer simulations 
data on square lattices of sizes ranging from 16 x 16 to 64 x 64, subjected to periodic 
boundary conditions. 

Both standard MC methods (Binder 1979) and MC renormalisation group (MCRG) 

techniques (Swendsen 1982) are discussed. The spin-flipping procedure used here is 
similar to that described in a previous paper (Carneiro et a1 1982). 
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In order to obtain a general overview of the phase structure of our system in the 
region under consideration, we used standard MC methods to study its thermal cycles. 
For fixed values of the coupling constants, the temperature was varied from a minimum 
( T , )  to a maximum (T , )  value, and back to T,  again. At each step the internal energy 
was measured, and we looked for hysteresis effects, which indicate the existence of a 
phase transition. 

In all thermodynamical paths studied (a > 2) a single hysteresis loop was found, 
indicating a single phase transition. Our results for thermodynamical paths with 
CY = 5, 10 and 50, on 20 x 20 lattices, are shown in figure 2. 

We conclude that the analysis of thermal cycles does not indicate the existence of 
an intermediate massless phase between the ordered and disordered ones. 

Using standard MC simulations we calculated the internal energy, specific heat C 
(from the fluctuations of the internal energy), magnetisation ( S )  and magnetic suscepti- 
bility x (from the fluctuations of ( S ) ) .  Peaks in C and x as functions of temperature, 
as well as the temperature dependence of ( S ) ,  were used as indications of a phase 
transition. In these MC simulations, performed on lattices of size 32 x 32, data were 
taken after 1 MC step/spin. Th: total number of MC steps/spin used was 60000, 
discarding 20% of the initial steps to allow for thermal equilibrium to be reached. 

In figure 3 we show the behaviour of ( a )  magnetic susceptibility, ( b )  specific heat 
and ( c )  magnetisation as functions of temperature for a = 10. The intersection of this 
thermodynamical path with the self-dual line is at k T / J 1  = 0.288. Our results for x 
and ( S )  are consistent with a single phase transition localised on the self-dual line. 
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Figure 2. Thermal cycles. Points are plotted after every ten iterations. 0( X )  correspond 
to increase (decrease) in temperature. ( a )  a = 5; the total number of MC steps/spin was 
800; T was changed by AT = 0.0032 after every iteration. ( b )  a = 10; the total number of 
MC steps/spin was 650; T was changed by AT = 0.002 after every iteration. ( c )  a = 50; 
the total number of MC steps/spin was 900; T was changed by AT = 0.000 24 after every 
iteration. Full curves are guides to the eyes. 
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Figure 3. Temperature dependence of ( a )  magnetic suceptibility ,y/ Nk, ( b )  specific heat 
C / N k  and ( c )  magnetisation ( S )  for the therm, ,namical path a = 10. 

Although the specific heat shows a peak at a temperature lower than k T / J ,  = 0.288, 
we did not find another peak in the dual region k T /  J 1  > 0.288, which indicates the 
existence of a single phase transition. 

Similar results were obtained for other thermodynamical paths in the region of 
interest a > 2. 

The two-peak structure in the C x T plot, mentioned in a previous paper (Baltar 
et a1 1984) where, using 15 000 MC steps/spin, we obtained a steep and narrow peak 
close to the self-dual line, and a shorter, broad peak at a higher temperature, was not 
found in these simulations, involving 60 000 MC steps/spin. The shorter, broad peak 
is not present, and only the sharp peak, close to the self-dual line, remains. 

We also carried out a Monte Carlo renormalisation group analysis of data taken 
on 16x 16, 32x32 and 64x64 lattices. The MCRG method we used consists, as usual 
(Swendsen 1982), of applying a chosen RG transformation to spin configurations 
generated by the MC simulation. The RG transformation of scale factor A = 2 and the 
method used to identify phase transitions are described in a previous paper (Baltar et 
a1 1985). Correlation functions 

FJr, L )  = c (cos[O(n) - e(n +cL(P))I) 
n , f i ( p )  

where p denotes first- or second-nearest neighbours, were calculated on lattices of size 
r2 ( r  = 4,8)  renormalised from lattices of size L2( L = 16, 32,64). Data were taken after 
20 MC steps/spin; again, the total number of MC steps/spin used was 60 000, and 20% 
of the initial steps were discarded. 

In figure 4 we show the behaviour of the second-nearest-neighbour correlation 
function F2(4, L )  measured on lattices of size 4 x 4  obtained by renormalisation of 
lattices of size L x  L ( L  = 16, 32, 64) as functions of temperature for ( a )  a = 5,  ( b )  
a = 10 and ( c )  a = 50. At low temperatures F2(4, 64) > F2(4, 32) > F2 (4,16), which is 
characteristic of an ordered phase, and at high temperatures F2(4, 64) < F2(4, 32) < 
F2(4, 16) corresponding to a disordered phase. 

The intersections of these thermodynamical paths with the self-dual line are 
localised at ( a )  a = 5; k T /  J ,  = 0.555, ( b )  a = 10: k T /  J ,  = 0.288 and (c)  a = 50: k T /  J1 = 
0.058. The results obtained for the correlation functions show that F2(4, 64) = 
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F2(4, 32) = F2(4, 16) in a very narrow region around the self-dual line, thus indicating 
a single phase transition. 

3. Excitations near the SOS model 

On the line x2 = 0 the relative angle 8, - 8, between two nearest-neighbour spins (ij) 
can take the values 8, - 8, = (2~/4)( I ,  - 5 )  = 0, * ~ / 2 ;  the value T is forbidden. We can 
then characterise the lattice configurations for x2 = 0 by the set { l ,}, such that I I ,  - 41 = 0, 1. 
In this case, the Z(4) model becomes equivalent to the restricted SOS model (Domany 
e? a1 1980, den Nijs 1985). 

Another way of characterising the configurations is to draw vertices in the centre 
of elementary plaquettes with arrows between nearest-neighbour spins pointing out- 
wards (inwards) for I, - I ,  = 1 (-1) or zeros for I ,  - I ,  = 0. 

For x2 = 0 the allowed vertex configurations are those corresponding to the eight- 
vertex model ( / I ,  - /, = 1 for all spins of an elementary plaquette) with vorticity 0, *4, 
and those with four zeros ( I ,  - l, = 0 for all spins of an elementary plaquette) or two 
zeros and two single arrows with vorticity zero. 

For x2 # 0 (x2c l ) ,  configurations with 11, - ( 1  = 2 are also allowed (18, - 8,1= T )  and 
they can be characterised in the vertex picture by double arrows. Vertices containing 
one double arrow can also have vorticity 0, *4. The combination of two such vertices 
defines a vortex of vorticity *4, as shown in figures 5 ( a )  and (6). 

In the ferromagnetic phase near the restricted SOS model (x2<< l ) ,  the most favoured 
configuration of the lattice is a background sea of zeros ( I ,  - I ,  = 0) with excitations 
such as closed loops of single arrows, impurities and vortex-antivortex pairs linked 
together linearly by strings of zeros (figure 5 ( c ) )  (den Nijs 1985). In the disordered 
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Figure 5. Vertex diagrams of ( a )  vortex of vorticity +4, ( b )  antivortex of vorticity -4, ( c )  
pair of vortex-antivortex. 

phase, vortices are free. It may happen that the ferromagnetic ordered phase melts 
via an intermediate critical phase, by means of two phase transitions. 

If a transition to a critical phase is present in the Z(4) model near the x2 = 0 line, 
then the lattice configurations in this phase should be similar to those of the ferromag- 
netic phase, but with logarithmic (instead of linear) interaction between vortices and 
antivortices. 

On the x 2 = 0  line, this should correspond to the roughening transition of the 
restricted SOS model. Above the roughening temperature T R ,  the rough interface can 
be characterised by its effective Gaussian coupling constant K (Kadanoff and Brown 
1979, Knops 1980, Pruisken and Brown 1981), which has the universal value KR = 7r/2 
at T R  (Kosterlitz 1974, Knops 1977). At the self-dual line, K * = 2 7 r / N  (JosC et a1 
1977). Increasing the temperature further, a Kosterlitz-Thouless transition into a 
disordered phase takes place at & ~ = 8 7 r / N ~  (Kosterlitz and Thouless 1973, JosC et 
al 1977). 

Near the x2 = 0 line, for the Z(4) model, this should correspond to a situation in 
which the positional entropy of the composite vortices exceeds the logarithmic interac- 
tion, leading to a disordered phase with free vortices and antivortices (Kosterlitz- 
Thouless transition). 

However, we observe that for the Z(4) model on the x1 = 0 line K K T =  K R =  K *  = 
7r/2, indicating the absence of an intermediate phase between the ordered and disor- 
dered ones-a single phase transition occurs, on the self-dual line. 

We then conclude that the study of the excitations near the restricted SOS model 
strongly supports the evidence that there is no critical phase in the Z(4)  spin model 
in two dimensions and enables us to locate the roughening transition of the restricted 
SOS model. 
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